Puentes de Y-TZP zirconio en el sector anterior: A propósito de un caso clínico.

RESUMEN
La terapéutica con Prótesis Fija actual del sector anterior se basa en unas elevadas demandas estéticas, tanto por parte de los profesionales como de los pacientes. Para mejorar estos patrones estéticos, la tecnología actual nos ofrece restauraciones de porcelana sin metal en las que cada vez se puede garantizar mejor su resistencia bajo condiciones funcionales exigentes. El presente caso explica la posibilidad de utilización de los recientes materiales basados en el zirconio, empleando como ejemplo el sistema LAVA de 3M-ESPE.

PALABRAS CLAVE
Porcelana, puentes cerámicos, restauraciones cerámicas, zirconio.

Y-TZP zirconium in antero superior front, with regard to a clinic case.

ABSTRACT
Therapies with current Fixed Prosthodontics in antero-superior front is based on a high aesthetic demand from part of professionals and patients. To improve this aesthetics pattern, the actual technologies offer us porcelains metal-less restorations in those it can be guaranteed better resistance under high functional conditions. In present case it is explained possibility of use new materials based in zirconium using as an example LAVA system of 3M-ESPE.

KEY WORDS
Porcelain, ceramic fixed partial dentures, all-ceramic restorations, zirconia.

INTRODUCCIÓN
La necesidad de lograr un adecuado resultado estético en los pacientes que acuden diariamente a la consulta del odontólogo está dando lugar a un constante desarrollo de diversos materiales y técnicas en Prótesis Fija con el fin de aportar la estética requerida hasta en los casos más complejos, sobre todo en aquellos en los que hay elevadas exigencias funcionales. Dentro de los materiales restauradores estéticos, los más importantes son las porcelanas o cerámicas dentales.1 La longevidad de estas restauraciones depende de sus propiedades físicas y mecánicas, que están tratando de ser mejoradas constantemente. El material cerámico más reciente en aparecer ha sido el óxido de zirconio, que trata de aportar unas mejores propiedades en cuanto a tensión flexual, con el fin de poder ser utilizado, no sólo en restauraciones unitarias, sino también en puentes dentales.2
El sistema totalmente cerámico LAVA® (3M-ESPE, St. Paul, Minnesota, USA) es un sistema CAD/CAM comercializado en 2004, si bien se viene investigando en Alemania y en EEUU desde hace 4 años.
El sistema LAVA® consta de dos porcelanas, una de alta resistencia para el núcleo, compuesta de Y-TZP ZIRCONIO (Lava System Frame) con cristales de zirconio tetragonal (cristales de 5 micras), y otra de elevada estética (feldespática), desarrollada específicamente para el recubrimiento de las estructuras de zirconio (Lava Ceram®).
En la naturaleza, el zirconio cristaliza en estructura de tipo monoclinica, pero industrialmente se puede lograr una cristalización tetragonal metaestable (es la que se comercializa), siempre que se establezca mediante Ytrio. Esta manera de cristalizar del zirconio es de gran importancia para lograr su elevada resistencia mecánica a la flexión. Cuando se produce una grieta en la superficie del material (microfisuras de Griffith), la flexión y la humedad provocan que dicha fisura se propague a lo largo del material; la presión que genera la evolución de las microfisuras libera la energía suficiente para cambiar la cristalización del zirconio y pasa de su cristalización tetragonal a estructura monoclinica, la cual tiene un volumen un 3-5% mayor (transformación de endurecimiento). El crecimiento de las paredes de la grieta provoca un aumento de la presión en el vértice de la fisura, frenando su evolución. Este comportamiento mecánico aporta al óxido de zirconio resistencias de entre 900 y 1200 MPa.
El zirconio, como elemento, está agrupado en el grupo de los metales de la tabla periódica, por ello va a gozar de características del metal en cuanto a resistencia, comportamiento óptico y químico.
El óxido de zirconio, también denominado zirconia, es un material de color blanco y casi tan opaco como las aleaciones metálicas de las estructuras ceramometálicas; esta cualidad lo hace indicado para ocultar sustratos dentarios de color oscuro. Cuando se requiera una máxima estética y el sustrato sea favorable, se mejorará la translucidez de la restauración empleando coñas de un grosor reducido de 0.5 mm en el sector posterior o de 0.3 mm para el sector anterior, presentando una elevada resistencia a la fractura a pesar de la reducción del espesor. Además, las estructuras se pueden teñir para que el color base sea lo más parecido al sustrato dentario subyacente.
Esta cerámica está indicada para la elaboración de coronas unitarias y puentes dentales anteriores y posteriores, de 3 a 4 unidades (sin pónticos en extensión). La longitud máxima de un puentc está limitada a 38 mm, que es el tamaño de los bloques presintetizados para el tallado del material.
El propósito de este trabajo es presentar la secuencia clínica y tecnológica de la realización de un puente anterior con el sistema totalmente cerámico LAVA® mediante la descripción de un caso clínico.

Caso clínico

Diagnóstico y planificación del tratamiento

Paciente de 48 años, mujer, que acude a la consulta con altas demandas estéticas debido al grave deterioro de un puente antiguo de metal-resina en el sector anterosuperior, con pilar en 13 y con póntico del 12 en extensión. El motivo principal de la consulta, aparte de la preocupación estética, era dolor en el 13 como consecuencia de filtración de caries debido a la falta de ajuste de la restauración a nivel cervical. Dicha caries había provocado una lesión irreversible pulpar y requería la realización de una endodonia.
Para la posterior restauración del puente anterior se acordó con la paciente la colocación de un perno-muñón colado en el canino, dado el elevado grado de destrucción dentaria, y la posterior realización de un puente totalmente cerámico a fin de que el resultado estético final fuera el máximo, por tratarse del sector anterior. Asimismo, se planteó la posibilidad de cambiar el puente contralateral (21-23), de metal porcelana, dado que la estética del mismo era menor dada su elevada opacidad. Dicha posibilidad se decidió posponer por motivos económicos.
Las necesidades de ocultar el sustrato metálico requirió optar por una cerámica policristalina en base a óxido de zirconio que, además, es el material más resistente (1200 MPA) para cumplir las exigencias mecánicas de los puentes totalmente cerámicos.
SISTEMÁTICA CLÍNICA Y DE LABORATORIO (TÉCNICAS Y MATERIALES)

PRIMERA FASE CLÍNICA
Tras el control del dolor y la realización de la endodoncia en el canino a través del puente (Figura 2), se procedió a realizar unos modelos de estudio que fueron montados en un articulador semiadjustable, con ajuste mediante registros posicionales intraorales de cera. El modelo superior fue montado mediante arco facial con eje estándar (Figura 3), y el modelo inferior se montó en máxima intercuspidación sin necesidad de registros de cera, dada la buena estabilidad oclusal presente en los sectores posteriores. En dichos modelos de estudio, tras la toma de color, se solicitó al laboratorio la confección de un provisional de acrílico, tallando los dientes de escayola por defecto para que el resultado en los dientes pilares fueran unas coronas en "cáscara de huevo" que luego permitieran el rebasado en boca (Figura 4).

En la siguiente cita, tras la retirada del puente antiguo (Figura 5), se preparó el canino para el perno-muñón colado mediante técnica indirecta. Para ello se preparó el conducto con drills calibrados del sistema Parapost® y se conformó la dentina sana remanente (Figura 6). La impresión de la preparación se tomó con técnica de doble mezcla de silicona de adición Express® de 3M-ESPE e introduciendo un jito de plástico del calibre del drill final (Figura 7). Dado el avanzado grado de destrucción, fue imposible lograr un área de dentina supragingival suficiente para lograr el efecto férrula o abrazadera necesario para lograr una adecuada retención del perno. Por ello, se realizó la preparación de un perno lo más largo posible (siempre respetando el sellado apical) y el posterior cementado mediante técnica adhesiva para incrementar la retención del mismo. Bajo anestesia se pasó al tallado inicial del incisivo central para poder adaptar el provisional del puente, tallado que no tiene que ser definitivo puesto que la finalidad es poder colocar el puente provisional.

El óxido de zirconio, dada su elevada resistencia, no requiere un grosor de cofia tan grande como otras cerámicas, siendo su grosor apropiado de 0.5 mm. Además, al no ser un material oscuro como el metal, las capas de porcelana de recubrimiento adicionales no requieren demasiado espacio para tapar un color oscuro. Por todo ello, se aconseja hacer una reducción similar a las preparaciones de metal-porcelana con algunas singularidades propias del sistema;
la reducción axial debe ser de 1.5 mm en todo el contorno, así como en la cara oclusal y de 2 mm en la zona de las cúspides activas y bordes incisales. A diferencia de otros sistemas CAD/CAM de escaneado mecánico, la línea de terminación puede ser, o un chamfer profundo o, mejor, un hombro redondeado de 1mm.³

La porcelana es uno de los mejores materiales para los tejidos blandos, dada su biocompatibilidad y la escasa adherencia de bacterias a la misma debido a la capa de glaseado, además de requerir un margen mínimamente subgingival por sus propiedades estéticas; por todo ello, se considera un material de restauración ideal para los tejidos gingivales.²,⁵ La localización del margen no debe ser necesariamente subgingival, salvo el caso de querer enmascarar un sustrato muy oscuro, ya que no se tiene que ocultar ningún ribete metálico de la estructura de refuerzo. Otra ventaja de realizar márgenes yuxtaposados es el mejor resultado en la obtención de impresiones y, por tanto, el mejor ajuste de las restauraciones finales.²,⁵

Para el rebasado del puente de acrílico se colocó, en el conducto preparado para el perno en el 13, un vástago o perno prefabricado del grosor correspondiente al drill empleado para realizar la preparación, y al diente pilar se le aplicó una capa de vaselina como medida auxiliar. La importancia de emplear un acrílico con una fase exotérmica baja evitará posibles lesiones pulpares. Para la unión del acrílico de rebase al puente se aplicó una película de monómero; después, se introduce el acrílico en la fase de mezcla con una consistencia similar a la miel o bien cuando el acrílico entra en fase plástica. Una vez polimerizado el acrílico de rebase, se repasan y eliminan las rebabas de exceso, se pule y se cementa con un cemento provisional libre de eugenol para evitar la inhibición de polimerización del cemento de resina, que se empleará para el cementado posterior del puente cerámico (Figura 8).

Los provisionales, además de las funciones comunes de estética, protección del diente tallado y estabilidad oclusal, nos servirán para valorar el color, la forma y el tamaño del futuro puente, así como para recoger las opiniones del paciente al respecto.

Tras el vaciado de la impresión del perno con escayola tipo IV (piedra mejorada), se montó el modelo del perno en el articulador en máxima intercuspidación, replicando posiciones, y se envió al laboratorio solicitando la confección de un perno muñón colado de aleación semipreciosa.

En la siguiente cita, tras la valoración del perno en el modelo (Figura 9) y en boca, se pasó al cementado del mismo mediante cemento RelyX Unicem® de 3M-ESPE sin preparación previa de la raíz o del perno metálico, como indican las instrucciones del fabricante. Dicho cemento autograbante y autoadhesivo proporciona buena unión, tanto a diente como a metal y porcelana. Su polimerización es dual y se
realización de una gingivectomía a bisel interno del modelo, con el fin de exponer la línea de terminación, y se procedió a la fase de independización de muñones. Posteriormente, se montó el modelo superior en el articulador en máxima intercuspidación replicando posiciones, puesto que el modelo antagonista estaba ya montado desde el comienzo del caso (Figura 11).

Se envió el modelo al laboratorio indicando el color base del puente y, de allí, se remitió el caso al centro de tallado del sistema LAVA en Barcelona para la confección de la estructura cerámica de zirconio.

Tecnología de Laboratorio

La fase de laboratorio de confección de las estructuras consiste, en primer lugar, en un escaneado de los modelos con una cámara óptica de alta precisión (Figura 12), que toma una imagen de las preparaciones de los dientes tallados y de las zonas edéntulas. Posteriormente, mediante un software específico, se realiza el diseño de la estructura interna marcando los límites del tallado, forma, tamaño y posición de los conectores, pónticos, etc. (Figura 13). Como en todos los sistemas de porcelana, la parte más sensible es la

Figura 9.

Figura 10.

aconseja una primera aplicación breve de luz para poder retirar fácilmente los excesos del mismo, parcialmente polimerizado.

Tras el cementado del perno se pasó al tallado del mismo y al retallado final del incisivo central, bajo anestesia y con el empleo de hilo de retracción fino Ultrapack® nº 0 en el surco gingival (Figura 10). La posterior impresión se realizó con silicóna de adición (Express®) con técnica de doble impresión, primero con una silicona pesada compensada con un cajeado de la misma y con la realización de surcos de escape para evitar la presión hidrostática excesiva que pudiera deformarla. Antes de la segunda impresión con silicona fluida se colocó un segundo hilo de retracción impregnado con una solución hemostática como el sulfato férrico: dicho hilo es retirado una vez se ha cargado la silicona fluida en la cubeta y, a medida que se retira, se aplica la silicona sobre los dientes tallados ayudados de una jeringa de elastómeros.

El vaciado se realizó con escayola tipo IV (piedra mejorada) en máquina de vacío y siguiendo las proporciones de polvo: agua indicadas por el fabricante. Tras el fraguado, se introdujo el modelo en una cámara de humedad durante 12 horas para que la escayola se humedeciera e hiciera posible la
cara gingival de los conectores, que es donde se producen las fracturas del material. Por ello (y sólo para este material de elevada resistencia), se requieren unas dimensiones mí-

Figura 13.

Figura 14.

Figura 15.

Figura 16.

das del conector que deben ser de 3 x 3 mm 2,3. En los puentes de 4 unidades la dimensión del conector que une los dos pónicos debe ser, como mínimo, de 12 mm2 (4 mm en sentido ocluso-gingival y 3 mm en vestíbulo-lingual).

Una vez obtenido el diseño se envía toda la información a una máquina de procesado que talla bloques de oxido de zirconio presintetizados (Figuras 14, 15 y 16), no se em-

plean bloques sintetizados completamente porque podrían producirse grietas debidas al calentamiento que produce el tallado de una pieza más dura y, además, el tiempo de ta-

llado se incrementaría, así como el desgaste de las fresas de la máquina. En el mecanizado se tallan tanto las caras internas como las externas de la estructura cerámica. El siguiente paso consiste en el repasado de las irregularidades que podrían suceder durante el fresado del zirconio y la aplicación de una capa colorante antes de pasar a la sinterización definitiva. Existen 7 tonalidades de color co-

respondientes a colores de la guía Vita y cuya misión es
dar al strato cerámico un color favorable para la posterior caracterización con la cerámica de recubrimiento por la té-

tica de capas.

Finalmente se lleva a cabo la sinterización completa en el horno correspondiente (Figura 17) durante 7 horas durante la cual el material sufre una contracción de sinterización del 20-25% aproximadamente.2,4,5 La estructura se envía al laboratorio referente y luego a la clínica para realizar la prueba clínica en la boca del paciente. (Figura 18)

SEGUNDA FASE CLÍNICA
En la prueba se valoran los siguientes parámetros: asen-
tamiento completo de la estructura, retención, estabilidad, ajuste marginal y relación de la estructura con los tejidos blandos (Figura 19). El ajuste marginal varía entre las 36 y las 108 micras (según el fabricante, 45-50 micras).9 En el caso que nos atañe, la prueba fue adecuada en cuanto a la valoración clínica del ajuste marginal. Sin embargo, y debido a un problema de asentamiento originado por el excesivo contacto de la superficie gingival del pónico so-

bre la fibromucosa del reborde alveolar, se necesitó realizar un ajuste de la cara interna de la estructura de zirconio a nivel del pónico, tras lo cual se decidió tomar una impre-
sión de silicona con arrastre de la estructura para terminar los contornos gingivales y el resto de la restauración en un nuevo modelo (Figuras 20 y 21).

Una vez recibida la restauración terminada con la porcelana de recubrimiento, se valoró el resultado en el articulador. La prueba en los modelos fue dada por buena a nivel oclusal, ya que presentaba guía incisal y guía canina con la disclu-
sión posterior deseada en los movimientos excéntricos; al tratarse de un puente que afecta a incisivos y canino del lado derecho, la disclusión se debe valorar en protrusión (1 mm de separación posterior) y en la lateralidad derecha,
lográndose una adecuada separación posterior tanto en el lado de trabajo (1 mm), como en el lado de no trabajo (1,5 mm) (Figura 22).

La prueba clínica de la restauración final abarca la evaluación de los mismos parámetros que se estudiaron en la prueba de la estructura y, además, se valoran los contornos de la restauración y su relación con el periodonto y fibro-

mucosa, los contactos proximales, la oclusión y la estética. Si alguno de los parámetros no se ajusta a la situación del caso, se puede requerir algún tipo de reajuste. Si es así, las piezas del molde que se quedan porcelana expuesta sin glasear, se debe volver a enviar al laboratorio para lograr un correcto glaseado. La estética tras la carga de la porcelana fue excelente y dada por buena por la paciente, tanto en forma y tamaño como en color, lográndose enmascarar completamente el muelón metálico sin perder por ello propiedades ópticas. En cuanto a la función, se consiguió una guía incisal adecuada en protrusión con los incisivos y guía canina en la lateralidad derecha. El cementado se llevó a cabo con el mismo cemento con que se cementó el perno, RelyX Unicem®. Para el cementado no se prepararon ni los dientes, ni el metal, ni la porcelana siguiendo las instrucciones del fabricante, si bien se puede chorrear con óxido de aluminio (≤ 30 micras) para aumentar la microrugosidad de superficie, pero no se puede grabe con ácido dada la elevada resistencia del material 10. Se preparó la cápsula en la máquina Rotomix® (3M-ESPE) durante 15 segundos y se aplicó el cemento únicamente en la parte más cervical de la cara axial para evitar el efecto émbolo que podría impedir un perfecto asenta-
miento del puente sobre los dientes pilares, con los consiguientes efectos de falta de adaptación marginal y alteraciones oclusales (Figuras 23, 24 y 25). Para el cementado, al igual que se hizo anteriormente con el perno, se aplica luz durante unos segundos para retirar los excesos más groso-
ros y luego se completa la polimerización.
Tras el cementado, se procedió a valorar la oclusión nuevamente, sin necesidad de realizar ajustes, observándose una buena disclusión en lateralidad derecha y en protrusión de 1 mm en sectores posteriores. Los dientes inferiores no contactaban en máxima intercuspidación pero sí que lo hacían en cierre forzado, al intruirse los dientes de los sectores posteriores (separación de 20 micras).

CONCLUSIÓN
Los resultados de estudios in-vitro11,12,13 y los de estudios in-vivo longitudinales a corto plazo (2 y 3 años) presentan a los puentes cerámicos de óxido de zirconio (Y-TZP ZIRCO-NIO) como una alternativa terapéutica válida en puentes cortos en los que se requiera una elevada estética,4,14 tanto en el sector anterior como en el posterior.3 A pesar de que se necesitan resultados de estudios clínicos longitudinales a más largo plazo para incorporar este tipo de puentes a los protocolos de restauración con prótesis fija, los resultados de los estudios in-vitro acerca de las propiedades mecánicas del material apuntan buenas expectativas para su uso clíni-
cico.2,3 Los resultados estéticos y funcionales obtenidos en el caso clínico que se presenta son satisfactorios, tanto para el profesional como para el paciente en la revisión realizada a los 6 meses. Si bien, como es lógico, se necesita realizar un seguimiento a largo plazo (Figura 26).
BIBLIOGRAFÍA:

9. In-Sung Yeo, DDS, MSD, Jae-Bo Yang, DDS, MSD, PhD, Ji-Bong Lee, DDS, MSD, PhD. In vitro marginal fit of three all-ceramic crown systems. J Prosthet Dent. 2003 Nov;90(6):493-64.